Rebeccamycin derivatives as dual DNA-damaging agents and potent checkpoint kinase 1 inhibitors.

نویسندگان

  • Christelle Marminon
  • Fabrice Anizon
  • Pascale Moreau
  • Bruno Pfeiffer
  • Alain Pierré
  • Roy M Golsteyn
  • Paul Peixoto
  • Marie-Paule Hildebrand
  • Marie-Hélène David-Cordonnier
  • Olivier Lozach
  • Laurent Meijer
  • Michelle Prudhomme
چکیده

Rebeccamycin is an indolocarbazole class inhibitor of topoisomerase I. In the course of structure-activity relationship studies on rebeccamycin derivatives, we have synthesized analogs with the sugar moiety attached to either one or both indole nitrogens. Some analogs, especially those with substitutions at the 6' position of the carbohydrate moiety, exhibit potent inhibitory activity toward checkpoint kinase 1 (Chk1), a kinase that has a major role in the G(2)/M checkpoint in response to DNA damage. Some of these compounds retained a genotoxic activity either through intercalation into the DNA and/or by topoisomerase I-mediated DNA cleavage. We explored the structure-activity relationship between these compounds and their multiple targets. These rebeccamycin derivatives represent a novel class of potential antitumor agents that have a dual effect and might selectively induce the death of cancer cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies.

Insights from cell cycle research have led to the hypothesis that tumors may be selectively sensitized to DNA-damaging agents resulting in improved antitumor activity and a wider therapeutic margin. The theory relies on the observation that the majority of tumors are deficient in the G1-DNA damage checkpoint pathway resulting in reliance on S and G2 checkpoints for DNA repair and cell survival....

متن کامل

A three-step synthesis from rebeccamycin of an efficient checkpoint kinase 1 inhibitor.

Rebeccamycin derivative 1 bearing a sugar moiety linked to both indole nitrogens and an amino substituent on the carbohydrate unit was synthesized in three steps from the bacterial metabolite. This compound was found to be a highly potent checkpoint kinase 1 inhibitor with an IC(50) value of 2.8nM.

متن کامل

Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents.

Wee1 is a tyrosine kinase that phosphorylates and inactivates CDC2 and is involved in G(2) checkpoint signaling. Because p53 is a key regulator in the G(1) checkpoint, p53-deficient tumors rely only on the G(2) checkpoint after DNA damage. Hence, such tumors are selectively sensitized to DNA-damaging agents by Wee1 inhibition. Here, we report the discovery of a potent and selective small-molecu...

متن کامل

Application of 3D-QSAR on a Series of Potent P38-MAP Kinase Inhibitors

One of the most applied methods in drug industry for development of new drugs is 3D-QSAR methodology. As p38-mitogen-activated protein kinase (p38-MAPK) plays a crucial role in regulating the production of such proinflammatory cytokines as tumor necrosis factor-α (TNF-α) and interleukin-1, emerging as an attractive target for new anti-inflammatory agents, we used a 3D-QSAR based method of Compa...

متن کامل

DNA damage detection and repair pathways--recent advances with inhibitors of checkpoint kinases in cancer therapy.

Insights from cell cycle research have led to the hypothesis that tumors may be selectivity sensitized to DNA-damaging agents, resulting in improved antitumor activity and a wider therapeutic margin. The theory relies primarily on the observation that the majority of tumors are deficient in the G(1)-DNA damage checkpoint pathway, resulting in reliance on S and G(2) phase checkpoints for DNA rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 74 6  شماره 

صفحات  -

تاریخ انتشار 2008